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1. Let f: R — R such that f(x +vy) = f(x) + f(y) for each x,y € R. Further suppose
there exists o € R at which f is continuous. Show that there exists a ¢ € R such
that f(z) = cz for any x € R.

Proof. We claim that ¢ = f(1), that is, for z € R,

fl@) ==zf(1).
We will prove this in a sequence of steps:

Step 1: We will prove that f(nz) =nf(x) for alln € Z, x € R.

First it is easy to note that by linearity,

f(0) = f(0+0) = f(0) + f(0),
which forces to f(0) = 0.

Let x € R. We have f(1-xz) = f(x) =1- f(x). Assume f(kz) = kf(x) for some
k€ N,k > 1. Then f((k+ 1)z) = f(kx 4+ z) = f(kx) + f(z) = kf(z) + f(x) =
(k+1)f(x). By induction, we have f(nz) = nf(x) for all n € N.

More generally, given n € Z, if n = 0 or n € N, then we are done; otherwise —n € N,
and note that by linearity,

f(nz) + f(=nz) = f(nz + (—nx)) = f(0).

Therefore, f(nx) = —f(—nx) = —[(—n)f(z)] = nf(z). Hence f(nz) = nf(x) for
alln € Z, x € R.

Step 2: We show that f(qx) = ¢f(z) for all ¢ € Q,z € R.
Write ¢ = = in standard form, where n € Z, m € N. Then by Step 1,

n i T

flar) = f(22) = fn- =

Next, notice that we have f(z) = f(m - %) = mf(:%), by linearity. Since we have

m € N, m # 0. Thus dividing both sidesmby m, we have f(Z) = % - f(x). By the

above, f(qr) = nf(x) = 2 f(x) = g (x), for any g € Q. z € R.
Notice that no continuity is needed in Steps 1 and 2.

Step 3: We claim that f(z) = 2 f(1) for all z € R, and this step requires continuity
of f. We first claim that continuity at xy implies that f is continuous everywhere.
Indeed, let y € R be given, we will show that f is continuous at y.
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Let € > 0. Since f is continuous at xg, there is § > 0 such that for all |z — z¢| < 9,
|f(x)—f(zo)| < e. Now with the same § > 0, if [z—y| < 0, then |(z—y+x0)—z0| < 6.
We have, by linearity:

[f(2) = )l = |f(2) = f(y) + f(wo) = f(zo)| = [f(x =y +x0) = flwo)| <6,

substituting (z — y + x¢) — . This shows that f is continuous on R.
With the claim above, let £ € R. Then by density of rational numbers, there exists
a sequence (r,) C Q such that (r,) converges to x. By the sequential criterion for
continuity, f(x) = lim, o f(r,). But since r, € Q, we have f(r,) = f(r, 1) =
rnf(1), by Step 2. Using continuity, we have

Fla) = lm £(r,) = lim (r,f(1)) = (lm 7,)£(1) = 2f(1)

n—oo n—0o0

Therefore we have shown that ¢ = f(1) € R as required. O



2. Let g : R — R such that

(&) ::{ 22, if r € Q

r+3, ifx e R\Q
Find the continuity points of g.

Proof. We claim that g is continuous at x = 3 but nowhere else.
Continuity at x = 3:

Let € > 0. Note that g(3) = 2 x 3 = 6 since 3 € Q. We choose § := § > 0. Then for
|z — 3| <6,

2z —3| <25 =¢, ifx €Q
l9(x) — 6] = - .
lt+3—6|=|r—3|<d<e ifx e R\Q

Therefore ¢ is continuous at x = 3.

Discontinuity at = # 3:

Let x # 3. Whatever g(x) is, by sequential criterion, it suffices to find two sequences
(), (yn) which converge to x but g(x,), g(y,) converge to different limits. To this
end, we choose (z,,) be a rational sequence converging to x, and (y,) be an irrational
sequence converging to x, whose existence is guaranteed by density of rational (resp.
irrational) numbers in R. Notice that ¢g(z,) = 2z, = 2z, g(yn) = yn +3 — = + 3.
Since = # 3, 2x # x + 3, and hence g(x,), g(y,) converge to different limits. This
shows that g is discontinuous at any = # 3. O



3. Let f: A = R, zg € R a cluster point with respect to A, and suppose that
lim, ., f(x) does not exist in R. Show that there exists € > 0 and two sequences
(n), (yn) € A\{xo} converging to x¢ such that |f(z,) — f(yn)| > € for any n.

If f is bounded, show further that there exist two real numbers [’,[” € R and two
sequences (x]) and (y),) € A\{xo} converging to o such that f(z,), f(y.,) converge
to I', 1", respectively, but that I" #£ [”.

Proof. First Part:

We will use a result in Q2, Homework 5, the Cauchy criterion for existence of limits
of functions. Since now lim, ., f(z) does not exist in R, by the negation, there
exists € > 0 such that for all § > 0, there exist z,2" € A\{zo} with |z — x¢| < 0,
|2" — x| < d such that

f(z) = fa")] = e

Now for each n € N, we take § := % > 0, and denote x, 2’ by x,,y, respectively, for

each n € N. In this way we have constructed two sequences (z,), (yn) € A\{zo}
converging to xy such that |f(z,) — f(y,)| > € for any n.

Second Part:

By the first part, we obtain € > 0 and the two sequences (), (y,) as desired. Since
f is bounded, in particular, the sequences f(z,), f(y,) are bounded. By Bolzano-
Weierstrass theorem, there are real numbers I/, [ and subsequences f(x,,) of f(x,)
and f(yn,) of f(y,) such that f(x,, ) —{, f(yn,) — . Denote f(z,,) as f(z,) and

T (Wny) as f(yn)-

However, by construction, |f(x)) — f(y.,)| > € for any n. By the order preserving
property, we have

1) = Jim | ()~ F)] > e

(Notice that here € > 0 is a fixed constant; not to be confused with the arbitrary
¢ > 0 when we prove the existence of limits)

In particular, we have shown that I’ £ [”. H



4. Consider real numbers a < b < c. Let f: (a,b] = R, g : [b,c¢) — R be continuous at
b, and suppose that f(b) = g(b). Let h : (a,c) — R be defined by:

) = f(z), if v € (a,b]
) { g(x), if z € [b,¢)

Show that
(a)h is continuous at b.

(b)If f,g are uniformly continuous then so is h.

Proof. (a) Note that the condition that f(b) = g(b) ensures that h(b) is well-defined.
Let € > 0. Since f is continuous at b, there is §; > 0 such that for each b—d; < z < b,
x> a,

[f(z) = f(b)] <e.

Similarly, since g is continuous at b, there is d > 0 such that for each b < x < x40,
x <c,

l9(x) — g(b)| <.
Then take § := min{d;,d2} > 0. Forb—0 <x <b+ 4, a < x < ¢, we have:

lf(x)— f(b)] <e ifa<ax<b
lg(x) —g(b)| <€ ifb<z<c

() = h(b)] = {
Hence ¢ is continuous at b.

(b) Let € > 0. Since f is uniformly continuous, there is d3 > 0 such that for each
|z —y| < d3,a <z <ba<y<hb,
€

7@) = f)l <

Similarly, since g is uniformly continuous, there is d, > 0 such that for each |z —y| <
o,b<zr<cb<y<ec,

l9(x) — g(y)] < =.
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Then take ¢’ := min{dz,d4} > 0. For |z —y| < ¢,a < x < ¢,a < y < ¢, we have:
([ |fx) = fly)| < §<e ifa<z<ba<y<b
l9(x) —g(y)| <5 <e ifb<z<cb<y<c

[f(@) = g()| < [f(x) = FO) +19(y) —g(D)] <5 +5 =€

h(z) — h(y)| =
() W)l ifa<ax<bb<ly<c
9(x) = fW) < lg(x) —g®) +1f(y) = FO) < 5+ 5 =¢
| fb<zr<ca<y<b
Hence h is uniformly continuous on (a,c). O



