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1. Let f : R→ R such that f(x+ y) = f(x) + f(y) for each x, y ∈ R. Further suppose
there exists x0 ∈ R at which f is continuous. Show that there exists a c ∈ R such
that f(x) = cx for any x ∈ R.

Proof. We claim that c = f(1), that is, for x ∈ R,

f(x) = xf(1).

We will prove this in a sequence of steps:

Step 1: We will prove that f(nx) = nf(x) for all n ∈ Z, x ∈ R.

First it is easy to note that by linearity,

f(0) = f(0 + 0) = f(0) + f(0),

which forces to f(0) = 0.

Let x ∈ R. We have f(1 · x) = f(x) = 1 · f(x). Assume f(kx) = kf(x) for some
k ∈ N, k ≥ 1. Then f((k + 1)x) = f(kx + x) = f(kx) + f(x) = kf(x) + f(x) =
(k + 1)f(x). By induction, we have f(nx) = nf(x) for all n ∈ N.

More generally, given n ∈ Z, if n = 0 or n ∈ N, then we are done; otherwise −n ∈ N,
and note that by linearity,

f(nx) + f(−nx) = f(nx+ (−nx)) = f(0).

Therefore, f(nx) = −f(−nx) = −[(−n)f(x)] = nf(x). Hence f(nx) = nf(x) for
all n ∈ Z, x ∈ R.

Step 2: We show that f(qx) = qf(x) for all q ∈ Q, x ∈ R.

Write q = n
m

in standard form, where n ∈ Z, m ∈ N. Then by Step 1,

f(qx) = f(
n

m
· x) = f(n · x

m
) = nf(

x

m
),

Next, notice that we have f(x) = f(m · x
m

) = mf( x
m

), by linearity. Since we have
m ∈ N, m 6= 0. Thus dividing both sides by m, we have f( x

m
) = 1

m
· f(x). By the

above, f(qx) = n 1
m
f(x) = n

m
f(x) = qf(x), for any q ∈ Q, x ∈ R.

Notice that no continuity is needed in Steps 1 and 2.

Step 3: We claim that f(x) = xf(1) for all x ∈ R, and this step requires continuity
of f . We first claim that continuity at x0 implies that f is continuous everywhere.
Indeed, let y ∈ R be given, we will show that f is continuous at y.
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Let ε > 0. Since f is continuous at x0, there is δ > 0 such that for all |x− x0| < δ,
|f(x)−f(x0)| < ε. Now with the same δ > 0, if |x−y| < δ, then |(x−y+x0)−x0| < δ.
We have, by linearity:

|f(x)− f(y)| = |f(x)− f(y) + f(x0)− f(x0)| = |f(x− y + x0)− f(x0)| < ε,

substituting (x− y + x0) 7→ x. This shows that f is continuous on R.

With the claim above, let x ∈ R. Then by density of rational numbers, there exists
a sequence (rn) ⊆ Q such that (rn) converges to x. By the sequential criterion for
continuity, f(x) = limn→∞ f(rn). But since rn ∈ Q, we have f(rn) = f(rn · 1) =
rnf(1), by Step 2. Using continuity, we have

f(x) = lim
n→∞

f(rn) = lim
n→∞

(rnf(1)) = ( lim
n→∞

rn)f(1) = xf(1)

Therefore we have shown that c = f(1) ∈ R as required.
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2. Let g : R→ R such that

g(x) :=

{
2x, if x ∈ Q
x+ 3, if x ∈ R\Q

Find the continuity points of g.

Proof. We claim that g is continuous at x = 3 but nowhere else.

Continuity at x = 3:

Let ε > 0. Note that g(3) = 2× 3 = 6 since 3 ∈ Q. We choose δ := ε
2
> 0. Then for

|x− 3| < δ,

|g(x)− 6| =

{
2|x− 3| < 2δ = ε, if x ∈ Q
|x+ 3− 6| = |x− 3| < δ < ε, if x ∈ R\Q

Therefore g is continuous at x = 3.

Discontinuity at x 6= 3:

Let x 6= 3. Whatever g(x) is, by sequential criterion, it suffices to find two sequences
(xn), (yn) which converge to x but g(xn), g(yn) converge to different limits. To this
end, we choose (xn) be a rational sequence converging to x, and (yn) be an irrational
sequence converging to x, whose existence is guaranteed by density of rational (resp.
irrational) numbers in R. Notice that g(xn) = 2xn → 2x, g(yn) = yn + 3 → x + 3.
Since x 6= 3, 2x 6= x + 3, and hence g(xn), g(yn) converge to different limits. This
shows that g is discontinuous at any x 6= 3.

3



3. Let f : A → R, x0 ∈ R a cluster point with respect to A, and suppose that
limx→x0 f(x) does not exist in R. Show that there exists ε > 0 and two sequences
(xn), (yn) ⊆ A\{x0} converging to x0 such that |f(xn)− f(yn)| ≥ ε for any n.

If f is bounded, show further that there exist two real numbers l′, l′′ ∈ R and two
sequences (x′n) and (y′n) ⊆ A\{x0} converging to x0 such that f(x′n), f(y′n) converge
to l′, l′′, respectively, but that l′ 6= l′′.

Proof. First Part:

We will use a result in Q2, Homework 5, the Cauchy criterion for existence of limits
of functions. Since now limx→x0 f(x) does not exist in R, by the negation, there
exists ε > 0 such that for all δ > 0, there exist x, x′ ∈ A\{x0} with |x − x0| < δ,
|x′ − x0| < δ such that

|f(x)− f(x′)| ≥ ε.

Now for each n ∈ N, we take δ := 1
n
> 0, and denote x, x′ by xn, yn respectively, for

each n ∈ N. In this way we have constructed two sequences (xn), (yn) ⊆ A\{x0}
converging to x0 such that |f(xn)− f(yn)| ≥ ε for any n.

Second Part:

By the first part, we obtain ε > 0 and the two sequences (xn), (yn) as desired. Since
f is bounded, in particular, the sequences f(xn), f(yn) are bounded. By Bolzano-
Weierstrass theorem, there are real numbers l′, l′′ and subsequences f(xnk

) of f(xn)
and f(ynk

) of f(yn) such that f(xnk
)→ l, f(ynk

)→ l′. Denote f(xnk
) as f(x′n) and

f(ynk
) as f(y′n).

However, by construction, |f(x′n) − f(y′n)| ≥ ε for any n. By the order preserving
property, we have

|l′ − l′′| = lim
n→∞

|f(x′n)− f(y′n)| ≥ ε.

(Notice that here ε > 0 is a fixed constant; not to be confused with the arbitrary
ε > 0 when we prove the existence of limits)

In particular, we have shown that l′ 6= l′′.
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4. Consider real numbers a < b < c. Let f : (a, b]→ R, g : [b, c)→ R be continuous at
b, and suppose that f(b) = g(b). Let h : (a, c)→ R be defined by:

h(x) :=

{
f(x), if x ∈ (a, b]

g(x), if x ∈ [b, c)

Show that

(a)h is continuous at b.

(b)If f ,g are uniformly continuous then so is h.

Proof. (a) Note that the condition that f(b) = g(b) ensures that h(b) is well-defined.
Let ε > 0. Since f is continuous at b, there is δ1 > 0 such that for each b−δ1 < x ≤ b,
x > a,

|f(x)− f(b)| < ε.

Similarly, since g is continuous at b, there is δ2 > 0 such that for each b ≤ x < x+δ2,
x < c,

|g(x)− g(b)| < ε.

Then take δ := min{δ1, δ2} > 0. For b− δ < x < b+ δ, a < x < c, we have:

|h(x)− h(b)| =

{
|f(x)− f(b)| < ε, if a < x ≤ b

|g(x)− g(b)| < ε, if b ≤ x < c

Hence g is continuous at b.

(b) Let ε > 0. Since f is uniformly continuous, there is δ3 > 0 such that for each
|x− y| < δ3, a < x ≤ b, a < y ≤ b,

|f(x)− f(y)| < ε

2
.

Similarly, since g is uniformly continuous, there is δ4 > 0 such that for each |x−y| <
δ4, b ≤ x < c, b ≤ y < c,

|g(x)− g(y)| < ε

2
.

Then take δ′ := min{δ3, δ4} > 0. For |x− y| < δ′, a < x < c, a < y < c, we have:

|h(x)− h(y)| =



|f(x)− f(y)| < ε
2
< ε, if a < x ≤ b, a < y ≤ b

|g(x)− g(y)| < ε
2
< ε, if b ≤ x < c, b ≤ y < c

|f(x)− g(y)| ≤ |f(x)− f(b)|+ |g(y)− g(b)| < ε
2

+ ε
2

= ε,

if a < x ≤ b, b ≤ y < c

|g(x)− f(y)| ≤ |g(x)− g(b)|+ |f(y)− f(b)| < ε
2

+ ε
2

= ε,

if b ≤ x < c, a < y ≤ b

Hence h is uniformly continuous on (a, c).
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